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Science & Technologies of the Detonation Process

PRACTICAL IMPLICATIONS “’
Energy release & rate displaces
matter in the direction of the
detonation, laterally outward,
and behind the process as
relief waves.

After-burning

I

Chemistries dependent on
explosive composition and
oxygen intake supporting
shock transmission

== Shock waves from a large
TNT detonation

Initiation by thermally
induced intense energy
input (e.g., hot-wire,
impact/shock, radiation)

Background

System developers and explosive engineers regularly face the
demand of making learned decisions concerning the promise
of anew explosive, the selection an explosive for a new
application, and the characterization of an explosive system.
Users and those in command are often challenged to select
the components of an arsenal and assess potentia hazards
and/or investigate an event.

The types of information critical to these assignments

include sensitivity, mechanical properties, cost, availability,
and performance.
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Course Goals

The goals of the course areto

» provide an in-depth and advanced understanding of
explosives from theoretical and practical
standpoints,

» formulate the bases for evaluating the potential of
competitive and alternative explosive systems and
their potential utility, and

» providecriteriafor treating sensitivity and security .
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Learning Outcome

Upon successful completion of this course, you will be able to:

e Understand

¢ The nature of explosive molecules:
* Molecular constituents and bonding
¢ Classes of pure molecules and compositions
¢ Cost to manufacture

¢ Stability and sensitivity

¢ The detonation mechanism

¢ Explosive Effects

e Acquire the tools to estimate critical parameters associated with :
e Safety
¢ Detonation parameters

e Exercise a more comprehensive bases for:
e Assessing on-going research
* Devising innovation approaches for using explosives
* Assessing proposals for warhead development
* Crime scene investigation
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Overview & Linkages of Topics
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The Explosive Molecule & Utility
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Basic Attributes of a CHNO Explosive

But Terrorists Can
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Shock & Detonation Physics

Shocking Up To Detonation

Unique Characteristics of the hydrodynamic state
* Elastic to visco-elastic to non-recovery
* Particle versus shock velocities
* Conservation Laws
Conditions of Shock Jump
* Thermal
* Electronic
The Hugoniot and Equation of State

Practical examples & Solutions

Detonation
* Deflagration to Detonation
¢ Non-steady to Steady-State (Chapman-Jouguet))
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Introduction to the Rankine-Hugoniot Jump Equations

Piston motion —
X=0 x1

Stationary Piston

t=0 ti
Piston motion
Xp :(Us_up)t

Moving

Time, t

Stationary material

Distance
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Assuming slab geometry of infinite depth, the
motion of the left-piston drives particle flow at
the same velocity towards the rigid right-hand
piston. At the time that the left-hand piston
reaches x1, the shock front that develops is out in
front oPthe left-piston position, and the material
between the piston and the shock front is
compressed.

material Shock wave
X, =Ut

Application of Conservation Equations

Vo IVy =Pyl py :%U _ul)

P = p,uU

AE :%Pl [ﬂVo _Vl)
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Initial Density

Shock Velocity

v

Particle Velocity

Shock Pressure

» Final Density

\ Internal Energy
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Shock Setup and Transmission Resulting from
Hypervelocity Impact of Aluminum Slabs

Material compression

Shock Front Shock Front
Shock fronts moving at the same absolute rate in opposite directions
Hixson, LANL
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IMPACT TO INITIATION

High velocity jet impact against TNT-Rod
Immediate compression & thermal heating
Chemical reaction and pressure build-up in small volume about the impact
Shock formation/detonation

Impact Plane
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Relevant Detonation Parameters Derived from
Conservation Equations and Experiment
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Example: Composition B 0.3 032 034 036 038 04 042
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Specific Volume, cc/gram

044 046 048 05 052 054 056 058 06
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Explosive Detonation & Utility

(a) Shock Front Motion

Rarefaction
\ Shock Front

Fragmented
Initiator

Compressed
Reaction Zone
(tenth of mm)

(b) Chemistry & Energy Coupling

Rarefaction wave and
product expansion

Unreacted Explosive

Directed Energy

e Overpressure & Blast

¢ (e.g., EFP, Shaped Charge)
Cylinder Expansion

e Overpressure & Blast

)A\t

Pressure Reduction Reaction

Compressed & Thermally Activated

e Cylinder Expansion

Explosive * Fragmentation

Favor CO Formation
(Air Blast & Laboratory Frame)

Reaction Favors CO, + C Formation

(Metal Acceleration)
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