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The purpose of the present paper is to further explore this issue by performing 
numerical simulations of high velocity rods impacting semi-infinite metallic targets. In 
addition, we performed numerical simulations of these high velocity rods, perforating 
thin plates, and followed the crater's growth process in order to have more insight into 
the working of reactive armors, as explained above. 

 
ANALYTICAL MODELS 

 
The analytic models discussed above, for the crater's growth, are derived from 

momentum considerations. The basic process is of a jet eroding continuously and 
flowing radially from its point of contact with the target. The jet exerts a high pressure 
on the target, transferring lateral momentum and imparting a radial velocity to the 
crater, which is resisted by the target’s strength. 

    
Szendrei's model follows the time history of the crater's radial growth, resulting in 

the following expression for the final crater radius (rf): 

 r� = � ρ�r��V��2σ �1 + K�ρ�ρ� �� 
(1)  

where �	denotes density and subscripts ‘p’ and ‘t’ stand for the penetrator and target, 
respectively. �� is the penetrator's velocity, � describes the target's resistance to the 
radial flow, which is of the order of the target's flow stress (Y) in the models cited 
above.  

The parameter K in Eq. (1) is related to the erosion rate of the jet, through the 
hydrodynamic theory:  

 dPdL = K�ρ�ρ�  (2)  

where P and L are the penetration depth and jet length, respectively. In fact, the 
magnitude of K expresses the deviation from the hydrodynamics (no strength for both 
jet and target), in which case K=1.0.  Once the strength of the target enters into 
consideration K should have a value which is smaller than 1.0. Naz [3] assumed that 

for all practical purposes  
�� ����� ≫ �, so that strength terms are negligible as 

compared with the Bernoulli pressures, and that K should be equal to 1.0. 

  Naz and Woidneck [7] assumed that K=1 and that σ=Y and rewrote Eq.(1) in the 
form: 
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 r� = r�V�� 12Y 1!ρ� + 1!ρ�"� 
(3)  

For jet and target of equal density this equation simplifies to: 

 r� = r�V�� ρ8Y (4)  

Shinar et al [4] based their model on the principles of dynamic plasticity. Starting 
from the crater equation of motion they assumed that the crater's lateral velocity is 
given by kU, where U is the penetration velocity as defined by: 

 U = V�1 + �ρ�ρ� 
(5)  

They chose a value of k = √2/2 on empirical grounds, and their expression for the 
final crater radius is: 

 '( = '�)1 + ���2�  1!�� + 1!�*"� 
(6) 

where � = 2�/√3	.  
 
  It is clear that this expression is very similar to that of Szendrei for the crater's radius, 
Eq. (1). In fact, for large enough velocities (Vp>3km/s) the predictions from these 
equations are, effectively, the same. Note that the models cited above include some 
empirical constants, which can be determined by a few experiments or by numerical 
simulations, as will be shown next. 
 
NUMERICAL  SIMULATIONS 

 

A series of two-dimensional axi-symmetric simulations were performed using 
ANSYS/AUTODYN multi-material Eulerian solver. A constant mesh size of 0.25mm 
was used which, amounts to 12 cells on a jet diameter of 3mm. Several simulations 
were performed with 0.5mm and 0.125 mm cells, in order to check for the 
convergence of simulations with 0.25 mm cells. The radial and back surfaces of the 
thick targets, and the radial surface of the thin plates, were set with the FLOW 
boundary conditions, guaranteeing that waves do not reflect from these boundaries. 
Fig (1) shows two snapshots from a typical simulation of a jet penetrating a semi-
infinite target. The jet was modeled as a long rod (L=100mm) with constant velocity. 
The velocities were: 3, 5 and 7 km/s. The rod material was modeled with only 
compressibility but no strength.   
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Figure 1. Snapshots from a typical simulation. (a) at 10µs after impact, (b) final crater at 100µs after 

impact. Note the FLOW boundary as marked by the dashed line.  

For both steel and aluminum a Mie-Gruneisen equation of state was used and 
Table I lists the material parameters, taken from the AUTODYN material library, 
which we used in our simulations. A simple von-Mises strength model was chosen for 
the targets (Table II) while the jet had no strength, in order to represent a non-viscous 
fluid. The simulations were performed for target thicknesses, ranging from 2 to 60 
mm. The jet was simulated as a rod (no velocity gradient), 3mm in diameter, having 
an aspect ratio of L/D=20.    

 
TABLE I. Mie-Gruneisen EOS parameters. 

Material Gruneisen ΓΓΓΓ Sound Speed 

[mm/µµµµs] 

Shock velocity slope 

S 

Steel 1.67 4.61 1.73 
Aluminum 1.97 5.24 1.338 

 
TABLE II. Von-Mises Strength model parameters 

Material Density 

[gr/cc] 

Shear Modulus  

[GPa] 

Steel 7.85 64.1 
Aluminum 2.75 27 

 
Semi-infinite targets 

 
The first series of simulations was performed for steel rods impacting steel targets, 

with strengths ranging between 0.2-2.0GPa. The impact velocity in these simulations 
was Vp=7km/s. The crater's radius was measured at about the middle of the crater's 
depth, in order to avoid the influence of the entrance phase. Figure 2 shows the 
dependence of the normalized crater radius (divided by the jet's radius) as a function 
of target strength. The figure compares the results of our simulations with those 
predicted by the models of Szendrei [2] and Shinar et al [4]. We used K=1.0 and σ=Y 
for the Szendrei model, as recommended by Naz [3]. The model of Shinar et al [4] 
needs no fitting parameters, as seen by Eq. (5). Note that this equation was derived 
through some empirical considerations, as described above. One can clearly see that 
the general trend of the simulation results is very similar to that of the two models. 
The normalized crater radii in the simulations are lower by about 10% and 5%, as 
compared with the Szendrei and Shinar et al models, respectively. 

 
   

(a) (b) 

t=10µs t=100µs 
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Figure 2. Normalized crater radii for semi-infinite steel targets impacted by steel rods at 7 km/s.  

In order to investigate the issue of the parameter K, we determined the values of 
∆P/∆L in several simulations, using Eq. (2). We found that K varies in the range of 
0.87-0.92, depending on target strength and rod velocity. Thus, the assumption that 
K=1.0 is quite reasonable. Note that for the hydrodynamic case (both rod and target 
with no strength) the value of K should be 1.0. Thus, for strength-less rods, impacting 
a target with a finite strength, K should be smaller than 1.0, as we found in our 
simulations. It is clear that if we use K<1.0 in Eq. (1) we would get larger crater radii, 
which will shift up the Szendrei curve in Figure 1.  

 
The influence of impact velocity on the crater radius was determined by a series of 

simulations for a steel target (Y=1.0 GPa), penetrated by a steel rod at velocities in the 
range of 3.0- 7.0 km/s. Figure 3 shows the results of these simulations, and the 
predictions from the models, for the final normalized crater radius as a function of 
impact velocity. Here again we find that the models over predict our simulation results 
by about the same amount, as for the strength dependence results shown in Figure 2. 

 
Figure 3. Final crater radius for semi-infinite steel targets with Y=1GPa impacted by steel rods. 

Velocity [km/s] 
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The simulations described so far were done for steel rods penetrating steel targets. 
In order to investigate the influence of target density, a series of simulation was 
performed for steel rods penetrating aluminum targets. Figure 4 shows the result of 
these simulations, and we find a very good agreement with the model of Shinar et al, 
Eq. (6). 

 

 
Figure 4. Normalized crater radii for semi-infinite aluminum targets impacted by steel rods at 7 km/s.  

Finite targets 
 

Simulations with finite targets were performed for various materials and different 
rod velocities. We found that for plates which are thicker than the rod diameter, the 
crater radii vary significantly between the impact face and the back face. An example 
of such a crater, with varying diameter, is shown in figure 5. For these plates, we 
determined the minimum hole radius as shown in the figure.  
 

 
Figure 5. Perforated plate, the crater's radius was measured at the center of plate thickness. 

Impact face Back face 

r 
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Our next step was to determine an analytical expression for the hole radii, which 
will fit the numerical data for different plate thicknesses. It is clear that such an 
expression should asymptote to the crater's diameter in a semi-infinite target, which is 
designated by: rf/rp=q. In addition, for very thin plates the hole radius should be the 
same as the penetrator radius: rf/rp=1. The following expression applies for both 
requirements: 

 r�r� = q − .q − 1/e1234 (7)  

where h and d are the plate's thickness and the rod's diameter, respectively.  
 

The parameter q in Eq.(7) is taken from our simulation results for semi-infinite 
targets, thus leaving a single "empirical" parameter (α) in our numerically- based 
model. By curve fitting the numerical data for the steel plates with flow strength of 
1.0GPa, which are perforated by steel rods at 7 km/s, we find that α =1 for this case. It 
is clear that this parameter should include the dependence of the simulation results on 
the impact velocity of the rod as well as on the strength and density of the target. In 
fact, the lateral expansion of the hole is controlled by two opposing factors, the target's 
inertia (ρtV

2) and its strength (Y). A close examination of our simulation results, for 
the hole radii in different plates, led us to the conclusion that the free parameter α can 
be expressed as: 

 5 = 6� ��*���	 (8)  

where A is some constant.  
 
In order to demonstrate the validity of this assumption we show in Figure 6 the 

agreement between the simulation results and the empirical model for steel rods, 
perforating steel plates (Y=1.0GPa), at three impact velocities. We start with α=1.0 for 
the Vp=7km/s case, as discussed above. From Eq.(8)  we obtain the values of α=1.4 
and α=2.33 for the 5km/s and the 3km/s cases, respectively. The figure shows the 
excellent agreement between our simulation results (points) and the model's 
predictions (curves) according to Eqs. (7) and (8). 

 
As a further validation of our model we compare its predictions with the 

simulation results for the steel rods impacting steel plates with Y=0.5GPa, at 7km/s. 
According to Eq.(8), for this case we should use α=0.7. Again, the agreement between 
the model and our simulation results is very good, as is clearly shown in Figure 7. 
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Figure 6. Normalized hole radius as a function of normalized plate thickness. 

Figure 7. Different target strength. Steel targets impacted by steel rods at 7 km/s. 

 
Finally, in order to check the validity of our model for other plate materials, we 

simulated the impact of 7km/s steel rods perforating aluminum plates, having a 
strength of Y=0.5GPa. With the reference value of α=1.0, for the Y=1.0GPa steel 
plates. we obtain the following value of the parameter α for this case: 

 5 = �0.51 �7.852.75 = 1.19 (9)  

Vp = 7km/s   α =1 

Vp = 5km/s   α =1.4 

Vp = 3km/s   α =2.33 

Y = 1.0 GPa    α =1 

Y = 0.5 GPa   α =0.7 
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Figure 8. Steel and Aluminum plates with flow stress of 0.5GPa perforated by steel rods at 7 km/s.  

Figure 8 shows the good agreement between the simulation results and the curves for 
steel and aluminum plates, as predicted by our model. 

CONCLUSIONS 

 
Our main conclusion, regarding the crater diameters in semi-infinite targets, is that 

there is a very good agreement between the predictions of the two analytical models 
and our simulations. The models of Szendrei [1] and Shinar et al [4] over predict the 
crater diameters, as compared with our simulations, by factors of about 1.1 and 1.05, 
respectively. We used the values of K=1.0 and σ=Y in Szendrei's model, as suggested 
by Naz [3]. With a somewhat higher value for the target's resistance, σ=1.25Y, this 
model follows almost perfectly the simulation results. The model of Shinar et al 
accounts for the simulation results to within 5%. This is an excellent agreement, 
between model and simulation, as far as analytical models in terminal ballistics are 
concerned. We should note that these analytical models somewhat over predict the 
experimental data of Naz [3] and Naz and Woidneck [7], as was pointed out Shinar et 
al [4]. Our simulation results agree with the experimental data from these references, 
enhancing the validity of these simulations.  

 
We also performed several groups of numerical simulations for finite plates, 

perforated by high velocity steel rods, and found a simple formula which accounts for 
the normalized hole radii in these plates. With this numerically based model one can 
estimate the hole diameter in a thin plate through the crater's diameter in a semi-
infinite target (q), and the specific value of a parameter (α) which is related to the ratio 
between the inertia of the target and its strength. Noting that the two analytical models 
for semi-infinite targets, only slightly over predict our simulation results, one can use 
the asymptotic values for the crater diameters (q) from these models. Our model for 
the hole radii in finite thickness plates is, in effect, a numerically-based "empirical" 
model, and one should look further into the physics of the perforation process in order 
to account for it. Still, as a design tool for jet/plate interactions, we believe that this 
simple model can account for existing data, and point to improvements with ERA 
designs.    

Steel   α =0.7 

Aluminum    α =1.19 
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